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Summary 

    

A forecast combination algorithm called NICA is developed and tested to forecast Nicaraguan 

inflation. This procedure aims to build horizon-specific weights, based on a model’s historical 

performance under a rolling window estimation setting. It considers an endogenous trimming 

procedure based on statistical distributions for forecast weights, which are constructed for every 

forecast path period. Inflation forecasts are performed based on ARMA, OLS, SWLS, VAR, and 

VEC models using quarterly data from 2001Q4 to 2017Q1. It is found statistical support for 

NICA over more common benchmark combination methods.     
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I. INTRODUCTION 

 
Combining forecasts to obtain more efficient projections is a method employed in 

multidisciplinary fields (Clemen, 1989). Since the seminal works of Reid (1968 and 1969) and 

Bates and Granger (1969), forecast combination has become commonly used among 

researchers, private firms, and government institutions to improve the accuracy level of their 

projections. Central banks in particular, have performed research, and developed internal 

procedures based on forecast combination methods, to provide policymakers more accurate 

insight about short term expected fluctuations of main variables that influence monetary policy 

actions, particularly of inflation (Kapetanios et al., 2005 and 2008; Adolfson et al., 2007; Coletti 

and Murchison, 2002, Samuels and Sekkel, 2013; Bjornland et al., 2012; Aiolfi, Capistran and 

Timmermann, 2010; González, 2010; Bello, 2009; and Hubrich and Skudelny, 2016).   

The reason why forecast combination provides more robust estimates than a single optimal 

forecast is still a puzzle. Nevertheless, some justifications indicate that this method provides an 

insurance advantage against possible model misspecification or omitted variable biases 

(Baumeister, et al., 2015; Bjornland et al., 2012); it is a useful hedging strategy against structural 

breaks in data (Hendry and Clements, 2004; Diebold and Pauly, 1987; Makridakis, 1989); it is a 

reasonable approximation for underlying non-linearities (Pesaran and Timmermann, 2005; 

Marcellino, 2004; Hubrich and Skudelny, 2016); or for simple portfolio diversification arguments 

(Bates and Granger, 1969).   

Despite its well-recognized and demonstrated advantages, there is no common ground 

about the method to combine forecasts. At this respect it is important to mention that the 

method to be chosen has to deal with two simultaneous and interrelated issues (Samuels and 

Sekkel, 2013): i) a weighting scheme; and ii) a preselection of forecasts to combine (also called 

trimming). On the first case, Timmermann (2010) provides a complete survey of recent methods 

employed, emphasizing relative performance weights, and equal weighting schemes, as the two 

methods most commonly used given their simplicity and intuitive properties. On the other issue, 

forecast trimming methods could be classified into two main categories: exogenous and 

endogenous. However, both type of procedures appear to provide mixed results. While some 

studies have found that forecast trimming (particularly hard trimming) provides better estimates 

(Makridakis and Winkler, 1983), some other studies argue in favor of crowd wisdom: no 

trimming at all (Stock and Watson, 2002). 
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This document attempts to add to the current forecast combination literature by applying 

and comparing different combination methodologies to obtain robust estimates for Nicaraguan 

inflation.  We develop an algorithm, called the Nicaraguan Inflation Combination Assessment 

(NICA), which consists of an horizon-specific weighting scheme that favors forecasts according 

to their historical performance. In particular, we construct statistical weight distributions for 

every forecasted period, based on rolling window estimates, and select just those forecasts whose 

weights fall on the upper side of such distributions, particularly, those statistically significant at 

the 5% level. Forecast combination results generated by this methodology are compared with 

forecast combination outcomes produced by an equal weighting scheme, and by the top 

performance model for each period predicted.  Projections are generated by five kind of models: 

ARMA, OLS, SWLS, VAR and VEC, which are estimated using quarterly data for the period 

2001Q4-2017Q1. Four inflation fundamentals are considered for estimation and forecasting: US 

inflation, domestic money supply, banking credit to the Nicaraguan private sector, and the 

Cordoba-US$ nominal exchange rate. Through different variable combinations, and lag 

structures, we ended up with 309 models and forecasts to combine. Our results favor NICA 

over benchmark combination methods. In fact, we strongly recommend that NICA’s algorithm 

be incorporated to complement the set of tools used by the Central Bank of Nicaragua to 

generate macroeconomic forecasts used as basis for monetary policy decisions. The remaining 

sections of this document are organized as follows. Section II describes our forecast 

combination methodology; Section III depicts the set of forecast performing models and data 

span; Section IV provides our empirical results; and Section V Concludes. 

 

II. FORECAST COMBINATIONS 

 

In this section we describe the methods used in our empirical analysis to combine 

forecasts, and to compare such combinations among different criteria.   

 

A. COMBINATION METHOD 

 

A forecast combination method involves two simultaneous and interrelated issues to deal 

with (Samuels and Sekkel, 2013): i) a weighting scheme; and ii) a preselection of forecasts to 

combine. Since Bates and Granger (1969) original work, many weighting schemes have been 
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proposed, some more complex than others: relative performance weights (Granger and 

Newbold, 1974; Stock and Watson, 2002), equal weighting (Stock and Watson, 2004), least 

squares estimation (Granger and Ramanathan, 1984), and moment estimators (Elliot and 

Timmermann, 2004), to mention some of them. The most recent and complete survey of 

forecast combination methods in economic literature is listed in Timmermann (2010). From all 

these criteria, the first two of them continue to receive a great deal of attention in the literature 

because of their intuitive nature and their simplicity.  They are also two of the main 

methodologies used in our empirical analysis, as it will be mentioned below.  

The second issue, which is interrelated to the previous one, refers to the number and the 

kind of forecasts to combine.  Should we combine all the forecasts available? Or should we select 

among them, and combine just the most efficient forecasts? And if so, how to proceed about it? 

Economic literature classifies forecast trimming into two main categories: exogenous or 

predetermined, and endogenous to past forecast performance.  Exogenous trimming is a 

selection procedure where the number of forecasts to combine (independent of the method to 

be used), or a given percentage of the total available forecast set, are previously defined by the 

researcher (for instance: using just 5 models, or employing 5% of the total number of models 

available according to their R squared estimated value). On the other hand, endogenous 

trimming is a selection procedure where the number or forecasts combined will depend upon a 

relative comparison of past performance (usually through a Root Mean Squared Error, RMSE, 

criteria) among all available forecasts. In practice, both type of procedures appear to provide 

mixed results.  While some studies have found that forecast trimming provides better results 

(Makridakis and Winkler, 1983) 4, some other studies argue in favor of crowd wisdom, which 

implies no trimming at all (Stock and Watson, 2002). 

The method employed for empirical analysis in this document is based on forecast past 

performance efficiency at each of eight quarters ahead. We are interested in a forecast scope of 

this length, since a central bank’s definition of short run tends to be equal or lower than 2 years. 

The empirical analysis performed was based on an algorithm called the Nicaraguan Inflation 

Combination Assessment (NICA), which consists of a five-step method to construct a weighting 

scheme for model combination that includes an ex-ante endogenous procedure for model 

trimming. The Annex of this document presents a more detailed derivation of it. The first step 

                                                           
4 Makridakis and Winkler (1983) argue that there is a decreasing marginal benefit from adding forecasts to the 

combination pool, and that such marginal benefit significantly decreases after considering five-eight forecasts. 
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of such algorithm consists in performing rolling window estimations for all K models of different 

types considered in this document (ARMA, OLS, SWLS, VAR, and VEC), and generating 

pseudo out-of-sample inflation forecasts from every model, for each period S+h belonging to 

the established forecast horizon. A second step consists of computing window and model 

specific forecast weights, 𝑞𝑆+ℎ,𝑘
𝑤 , defined as the ratio of model k point forecast error’s inverse, 

in absolute terms, 𝒇�̂�𝑆+ℎ,𝑘
𝑤 ,  to the sum overall similar values for all K models, 𝐹�̂�𝑆+ℎ

𝑤  (𝐹�̂�𝑆+ℎ
𝑤 =

∑ 𝑓�̂�𝑆+ℎ,𝑘
𝑤𝐾

𝑘=1 ).5 The third step consists of getting the horizon-specific average weight for each 

model, �̂�𝑡,𝑘, equivalent to the average of model k forecast weights computed in each rolling 

window w.  In the fourth step we compute the mean and standard deviation of average weights 

for each period S+h that belongs to the forecast horizon. Then an endogenous trimming 

procedure was performed by selecting just those models whose average weights were above two 

standard deviations from the mean value.  Hence, we renormalized weights by setting to zero 

those who belong to models that did not made the cut, while making the chosen ones sum up 

to one.  Under this criteria the set of models to be combined were those whose performance 

was statistically significant at 95% confidence. It is important to mention that the final model 

set, as well as the best performance model, varied depending on the S+h period forecasted. The 

fifth and final step was multiplying each model out-of-sample forecast, �̂�𝑁+ℎ,𝑘, times its final 

horizon-specific normalized average weight, �̂�𝑆+ℎ,𝑘
𝑛 . The resulting inflation forecast path is what 

we called NICA.     

In addition, to measure NICA’s reliability, we compare its RMSE with those resulting from 

two hard-to-beat benchmarks: i) forecast combination using equal weights for all sample models; 

and ii) the best performing model for each forecast horizon.  Our method for comparing 

combinations criteria is presented next.   

 

B. COMPARING FORECAST COMBINATION CRITERIA 

 
Accuracy gains from forecast combination methods are usually illustrated by comparing 

RMSEs or FEs computed from an optimal/proposed combination method, and those 

                                                           
5 Window size depends on data availability.  We considered a 35 observation window (around 9 years) given the 
short span of available information.  Nevertheless, as described in Section IV, we performed a sensibility analysis 
or our results based on smaller and larger sized windows, and found that our results are robust to different window 
size specifications. 
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computed from one or several benchmarks.  Nevertheless, when comparisons are made in 

relative terms, there might be cases when conclusions taken from RMSEs could differ from 

those taken from FEs. Consider the example illustrated in Table 1, where forecasts from four 

different models (A, B, C, and D) are combined to forecast inflation for T+1. Each model 

forecast is weighted according to an equal weighting (EW), and to other (unknown) weighting 

criteria (OW), and both methods would be compared to determine the most efficient (lower 

error) inflation forecast combination.  Column [2] in panel (a) describes FEs produced by each 

model; columns [3] and [4] depict the weights assigned to each forecast, according to both 

criteria; columns [5] and [6] present the calculations required to get the combined FE for each 

method; while columns [7] and [8] describe the calculations required to obtain the RMSE statistic 

according to both criteria.  

 

Table 1.  Comparing forecast combination criteria 

(a) 

[1] [2] [3] [4] [5] [6] [7] [8] 

MODEL FE EW OW FE*EW FE*OW 
(FE)2 
*EW 

(FE)2 
*OW 

A 0.16 0.25 1 0.040 0.160 0.006 0.026 

B -0.10 0.25 0 -0.025 0.000 0.003 0.000 

C 0.50 0.25 0 0.125 0.000 0.063 0.000 

D -0.04 0.25 0 -0.010 0.000 0.000 0.000 

        

TOTAL    0.130 0.160 0.072 0.026 

   

 
     

(b) 
 

STATISTIC OW/EW EW Method OW Method 

ABS(FE)  0.130 0.160 

RMSE   0.268 0.160 

        

FE Ratio (OW/EW) 1.231       

RMSE Ratio (OW/EW) 0.597       

        

Z = ABS(FE)*RMSE  0.035 0.026 

Efficiency Gains (OW/EW) 26.5   
 

FE: Forecast Error; EW: Equal Weighting Scheme; OW: Other Weighting Scheme; RMSE: Root Mean Squared Error.     
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Panel (b) of Table 1 shows the results obtained. The first pair of rows depict FE and RMSE  

values for period T+1 resulting from each combination method, where the former is in absolute 

terms, hence ABS(FE). The following pair of rows describe ratios (OW/EW) for both statistics. 

In each case, a ratio lower than one would imply that the OW method provides a more efficient 

combination criteria.  Likewise, a ratio greater than one would imply a preference to combine 

model forecasts according to the EW criteria.  However, a problem could arise when each ratio 

provides a different signal.6  In the example illustrated this is exactly the case. The ABS(FE) ratio 

(OW/EW) is greater than one (1.231), which indicates that forecasts errors are lower under the 

EW method. However, the RMSE ratio (OW/EW) is less than one (0.597), indicating a forecast 

efficiency advantage favoring the OW method.  

To avoid getting ambiguous conclusions, as those illustrated above, we propose an 

alternative statistic, called Z.  Consider the last two rows of panel (b) in Table 1. The first of 

them depicts the value of Z, which is the product of the former statistics ABS(FE) and RMSE. 

The computed value is a single number.  Therefore, the lower value (resulting from the OW 

method in this example) would indicate the more efficient criteria.7 The latter row computes 

efficiency gains from using OW as a forecast combination method with respect to EW.  They 

are equivalent to the percentage difference between both Z values (0.026 vs 0.035), which for 

this example resulted in 26.5%.   

Our proposed methodology to compare forecast combination procedures becomes more 

useful with a longer forecast horizon. In this case we would have different values for Z, not only 

for every method, but also for each period forecasted. Therefore, by adding them up, and 

comparing their cumulative values we would get a more robust conclusion about the most 

efficient forecast combination method.  Hence, efficiency gains would be computed as a 

percentage difference from such a cumulative sum of Z values. A description of the number and 

type of models, as well as of all data series employed in our empirical analysis is given in the 

following section.   

                                                           
6 The same intuitive result is obtained if we compute absolute or percentage differences between both statistics. 
7 Hypothesis testing could be performed under this scenario.  In particular a null hypothesis, H0, could maintain 
that the difference between both values of Z is not different from zero.  To our knowledge there is no statistical 
distribution identified for Z; this will be subject to further research. Nevertheless, in the meantime, we would argue 
in favor of choosing the lower value.        
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III. FORECASTING MODELS AND DATA 

 

A. MODELS 

 
In order to proceed with forecast combination we created a set of models to forecast 

Nicaraguan inflation. In particular, we employed five kind of models: ARMA(p,q), Ordinary 

Least Squares (OLS), Stepwise Least Squares (SWLS), Vector Autoregression (VAR), and Vector 

Error Correction (VEC) models. Different lag and variable combinations were performed for 

each kind of model. All variables were transformed to their logarithmic form, and rolling 

estimation, through moving windows, was performed for each model specification.  Table 2 

describes the number of models estimated, the period of data available for estimation, as well as 

the window size established to produce our results. A brief description of empirical estimations 

performed under each kind of model is provided below.      

 

1. Autoregressive Moving Average (ARMA) Models 

 

ARMA(p, q) models are univariate representations that express a variable (𝑦𝑡) as a 

function of its own lags (p), and lags (q) of the error term (𝜀𝑡). Let Ω𝐴𝑅𝑀𝐴 =

𝐴𝑅𝑀𝐴(1,0), 𝐴𝑅𝑀𝐴(2,0), …𝐴𝑅𝑀𝐴(𝑝, 0), 𝐴𝑅𝑀𝐴(1,1), …𝐴𝑅𝑀𝐴(𝑝, 𝑞),  be the set of 

estimated models. Therefore, the total number of models contained in such a set is equal to 

Ω𝐴𝑅𝑀𝐴 = 2p(1+q). We let p = 13, and q = 8. Hence, Ω𝐴𝑅𝑀𝐴 is composed of 234 models.8  

 

2. Ordinary Least Squares (OLS) Models  

 
The OLS models that we employed are classical econometric representations of variables 

as a function of their past values, and one or more independent variables and their lags. Let’s 

assume that Ω𝑂𝐿𝑆 is the set of all OLS models estimated, which contains all possible 

combinations of multivariable models, along with all possible combinations of lags. In this case, 

the total number of OLS models contained in Ω𝑂𝐿𝑆 equals to 5𝑝0 + 4𝑝1 + 6𝑝2 + 4𝑝3 + 𝑝4. 

The sub-index “i” in the lag expression 𝑝𝑖 denotes the number of inflation fundamentals 

included in each estimation. For instance, 𝑝2 denotes an OLS expression where the Nicaraguan 

Consumer Price Index was estimated using its own lag(s), and two of its fundamentals. We let 

                                                           
8 The values for p and q were the maximum values allowed, given data availability. 
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𝑝0 = 2; and 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 1, which implies that Ω𝑂𝐿𝑆 contains 25 (=10+4+6+4+1) 

models.9  

Table 2.  Data span and model sets 
 

Data Span 
Window 

Size 
Model Sets (Ω) 

Ω𝐴𝑅𝑀𝐴 Ω𝑂𝐿𝑆 Ω𝑆𝑊𝐿𝑆 Ω𝑉𝐴𝑅 Ω𝑉𝐸𝐶  Ω𝑇𝑂𝑇𝐴𝐿 
2001Q4-
2017Q1 

35 234 25 20 15 15 309 

Source:  Own elaboration. 

 

3. Stepwise Least Squares (SWLS) Models 

 
SWLS is an iterative algorithm proposed by Efroymson (1960) to automatically obtain 

OLS regressions’ best fit.10 Each model representation is identical to those of the previous 

section, but the final results differ, since the SWLS algorithm was established to select just those 

regressors whose p-value was lower or equal to 0.05. We let 𝑝0 = 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 1.  

Hence, it would imply that Ω𝑆𝑊𝐿𝑆 contains 20 (=5+4+6+4+1) models.  

 

4. Vector Autoregression (VAR) Models 

 
Unrestricted VAR models are systems of equations that express each variable as a 

function of its own past values, and lags of the remaining variables in the system. We tried all 

combinations from two to five variables (domestic IPC and its four fundamentals), and different 

lag specifications. The set of all VAR models estimated, Ω𝑉𝐴𝑅, contained   4𝑃2 + 6𝑃3 + 4𝑃4 +

𝑃5 models. As before, the sub-index in the lag expression denotes the number of inflation 

fundamentals included in each VAR model. By letting  𝑃2 = 𝑃3 = 𝑃4 = 𝑃5 = 1, it would imply 

that Ω𝑉𝐴𝑅 is composed of 15 (=4+6+4+1) models (see Table 2). 

 

5. Vector Error Correction (VEC) Models  

 
We estimated equilibrium VEC models for one cointegrating relationship through the 

Johansen procedure.  As with the previous case, combinations for all possible variable and lag 

                                                           
9 We made exercises (not reported) with higher lag values for each fundamental varialbe, but they didn’t add 
significantly to our final results.  This was also the case for the rest of models presented in this section. 
10 Derksen and Keselman (1992), and Burnham and Anderson (1998) provide a description of the algorithm, and 
describe some advantages and disadvantages of this methodology.   
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specifications were performed. Therefore, the number of lags considered to estimate each VEC 

model is the same as in the VAR case.  Hence, Ω𝑉𝐸𝐶  is composed of 15 models. 

 

B. DATA 

 
Nicaraguan inflation was estimated and forecasted based on the models described 

before, using quarterly data from 2001Q4 to 2017Q1.11 The data set was obtained from the 

Central Bank of Nicaragua’s website, and included information for four well-identified inflation 

fundamentals: i) US Inflation; ii) Nominal Exchange Rate Cordoba-US Dollar (C/US$); iii) Real 

Money Supply; and iv) Real Banking Credit. The US represents Nicaragua’s main trading partner. 

Hence, US price fluctuations, along with C/US$ variations are transferred fast, and almost full 

to domestic prices (Treminio, 2014). Moreover, changes in domestic money supply and banking 

credit affect domestic inflation indirectly, through their effect on domestic GDP.12 Following 

Clements and Hendry (1999), data were not deseasonalized, nor detrended to avoid missing 

important forecasting information. This is also why we estimated ARMA instead ARIMA 

models. Finally, for empirical purposes all variables were transformed to their log form. The 

results obtained are described in the following section. 

 

IV. EMPIRICAL RESULTS 

 
Our main findings are presented in this section.  First we present our best performing 

models according to their past performance. Then forecast accuracy gains from NICA are 

portrayed with respect to the benchmarks used to compare our results. Finally, we describe 

results from a sensitivity analysis under different window sizes for rolling regressions.13      

 

 

 

 

                                                           
11 Data is constrained to start in 2001Q4, since we were not able to obtain information for all series before that 
period.    
12 It is important to mention that we used money and credit as a proxy for Nicaraguan GDP, since a quarterly series 
for such a variable is not available for the whole period under consideration.  
13 Our empirical analysis and outcome were based on computer programs made in Eviews.  Those programs are 
available upon request for further replication of our results.  In addition, suggestions from the authors can be 
provided if NICA is to be implemented as a complementary tool at the Central Bank of Nicaragua.   
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Figure 1.  Model Weight Composition 

 

(a) Untrimmed estimation 

 

 
 

(b) Endogenous Trimming (Weights above Mean + 2 SD) 
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A. TOP PERFORMING FORECASTS 

 
Figure 1 depicts forecasts weights grouped by model type (ARMA, OLS, SWLS, VAR, 

and VEC). Panel (a) presents the results from an unrestricted (untrimmed) estimation, while 

panel (b) presents the results from an endogenous trimming method, where the final forecasts 

combination was made from those forecasts whose weights were two standard deviations above 

the mean, at each forecasts horizon (from T+1 to T+8). Both graphs present model types 

ordered by past performance, that is, by their cumulative sum of forecast weights. From the 

untrimmed estimation we found that inflation forecasts from ARMA models outperform the 

remaining ones at each forecast period projected, since their cumulative sum of weights ranged 

from 64.2% to 78.3%. Moreover, OLS, and SWLS forecast importance is quite similar, and 

ranged from 4.5% to 17.1%.  Forecasts from VAR and VEC models lagged much behind, since 

their cumulative sum of weights do not surpass 6.5% (in T+1). Nonetheless, such results could 

also be affected by the number of models used to produce forecast in the first place. In fact, 

when we trimmed the models to account just for the top performers (those models whose 

weights are over two standard deviations from the mean), we found that top performer type 

models are still in the same order as above (see panel b). In particular, forecast weights for 

ARMA models represented in average over 73% of the total. Moreover, the average cumulative 

sum of weights for OLS models was about 17%, while the weight sum of the remaining models 

added up to about 10%.14     

 

B. FORECAST EFFICIENCY GAINS 

 
Our main results are presented in Table 3. Panels (a) and (b) depict Z values for NICA, 

as well as for both comparison methods used as benchmarks: the Equal Weight (EW) and the 

Top Model (T) criteria. Results presented in panel (a) include all 309 model forecasts estimated, 

while results in panel (b) just include the top performing models. Cumulative sums for Z values 

were performed for a short run horizon (from T+1 to T+2), for a medium term span (from T+1 

to T+4), and for the whole forecast path (from T+1 to T+8). Two main conclusions can be 

derived from this information. First, according to both untrimmed and endogenously trimmed 

estimations, NICA is the most efficient procedure to combine Nicaraguan inflation forecasts.  

 

                                                           
14 The only exception is T+8, where SWLS models’ importance represented 29.3% of the total. 
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Table 3.  Forecast Combination results 

 

 

(a) Untrimmed estimation 
 

FORECASTED PERIOD Z(NICA) Z(EW) Z(T) 

T + 1 0.156 0.188 1.118 

T + 2 0.272 0.330 0.462 

T + 3 0.413 0.513 2.879 

T + 4 0.435 0.898 0.264 

T + 5 0.491 1.044 2.409 

T + 6 0.517 0.868 0.864 

T + 7 0.191 0.866 0.651 

T + 8 0.507 1.037 2.780 

    
Cumulative Sum (Zt+1 to Zt+2) 0.428 0.518 1.580 

Cumulative Sum (Zt+1 to Zt+4) 1.276 1.928 4.724 

Cumulative Sum (Zt+1 to Zt+8) 2.982 5.743 11.427 

 

 

(b) Endogenous Trimming (Weights above Mean + 2SD) 

 

FORECASTED PERIOD Z(NICA) Z(EW) Z(T) 

T + 1 0.112 0.188 1.118 

T + 2 0.305 0.330 0.462 

T + 3 0.572 0.513 2.879 

T + 4 0.432 0.898 0.264 

T + 5 0.292 1.044 2.409 

T + 6 0.774 0.868 0.864 

T + 7 0.229 0.866 0.651 

T + 8 0.100 1.037 2.780 

    

Cumulative Sum (Zt+1 to Zt+2) 0.417 0.518 1.580 

Cumulative Sum (Zt+1 to Zt+4) 1.421 1.928 4.724 

Cumulative Sum (Zt+1 to Zt+8) 2.816 5.743 11.427 
NICA: Nicaraguan Inflation Combination Assessment; EW: Equal weights; T: Top 
weighted model;  

FE: Forecast Error; ABS: Absolute value; RMSE: Root Mean Squared Error; 

Z = ABS(FE)*RMSE.    
 

 



15 
 

Figure 2.  Efficiency Gains from NICA 

 

(1) Untrimmed estimation 

 

 
 

(b) Endogenous Trimming (Weights above Mean + 2 SD) 
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Cumulative sums for Z are lower under the NICA criterion, particularly in the short run. 

An interesting result is that both NICA and the EW criteria provide more efficient short run 

forecasts than the T method (a hard-to-beat method in practice).  The second important 

conclusion, which particularly holds for the NICA criteria is that endogenous trimming performs 

more efficiently in the short term (from T+1 to T+2), while in larger horizons untrimmed 

forecast combinations are more efficient. This result might be due to model forecast inertia or 

to the fact that the Nicaraguan inflation series might be subject to nonlinearities or to continuous 

structural breaks, so it could be better forecasted through a more ample set of models.   

Efficiency gains at each forecast horizon are depicted in Figure 2.  The vertical axis shows 

Z values’ percentage variations computed between the NICA combination method and each of 

the remaining criteria, at each forecast horizon established. The darker column represents 

NICA’s forecast efficiency gains respect to the EW method, while the lighter column denotes 

its efficiency gains respect to the T criteria. Panel (a) presents results from the untrimmed 

estimation. For this case, forecast efficiency gains are produced with respect to both benchmark 

methodologies, and the range from 17.3% to 48.1% for the EW combination method, and from 

72.9% to 73.9% for the T method. While NICA’s efficiency gains seem to remain stable (around 

73%), they are increasing along the forecast path with respect to the EW method. Panel (b) 

depicts NICA’s efficiency gains at the three forecast horizons established under our 

endogenously trimmed method. Efficiency gains are stronger, particularly for longer horizons 

with respect to the other two forecast combination criteria. In summary, NICA’s efficiency gains 

are strongly predominant with respect to both comparison benchmarks (EW and T) for either 

trimmed or untrimmed estimations. Furthermore, endogenous trimming provides the highest 

efficiency gains, particularly for the latter forecast path periods, which makes NICA a suitable 

methodology to generate inflation forecasts for monetary policy considerations. Figure 3 shows 

Nicaraguan inflation forecasts using NICA. The darker line shows observed year to year inflation 

from 2010Q1 to 2017Q1.  The wide dotted line from 2017Q2 to 2019Q1 shows forecasts under 

NICA.  In fact, the series forecasted was the unseasoned Nicaraguan IPC; hence, internual 

inflation was calculated on a posterior basis.  In addition, we computed inflation forecasts 

through the same methodology from 2014Q1 to 2017Q1 (not shown), in order to calculate an 

average forecast error, which we latter added to the original NICA forecast.  Such adjusted 

forecast (NICA Adj) is shown by the narrow dotted line in Figure 3.  
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Figure 3.  Nicaraguan Inflation Forecasts under NICA  

 

 

 

 

 

C. SENSITIVITY ANALYSIS 

 
We tested our results’ robustness through sensitivity analysis employing lower and larger 

size rolling windows. Tables 4 and 5 present the results obtained using window sizes of 40 and 

30 observations, respectively.15 In both tables, panel (a) shows results for the untrimmed case, 

while panel (b) describe those for the endogenous trimming methodology. Our main conclusions 

still hold, particularly with respect to the EW method: NICA leads to lower Z values along the 

whole forecast path for both trimmed and untrimmed estimations. We attribute such a 

robustness to model forecast inertia: the fact that in-sample forecast combination arrangements 

are still hold when forecasting a series out of the sample.  

 

                                                           
15 We also tested the methodology using different window sizes, and the conclusions still hold.  



18 
 

Table 4.  Sensitivity Analysis (Window Size = 40 observations) 

 

 

(a) Untrimmed estimation 

 

FORECASTED PERIOD Z(NICA) Z(EW) Z(T) 

T + 1 0.330 0.527 0.155 

T + 2 0.582 0.840 0.883 

T + 3 1.154 1.463 0.321 

T + 4 1.271 2.204 2.185 

T + 5 0.530 1.357 0.158 

T + 6 0.842 1.381 0.575 

T + 7 0.081 1.149 1.668 

T + 8 0.222 1.259 5.774 

    

Cumulative Sum (Zt+1 to Zt+2) 0.912 1.367 1.038 

Cumulative Sum (Zt+1 to Zt+4) 3.337 5.033 3.544 

Cumulative Sum (Zt+1 to Zt+8) 5.012 10.180 11.719 

 

 

 

(b) Endogenous Trimming (Weights above Mean + 2SD) 

 

FORECASTED PERIOD Z(NICA) Z(EW) Z(T) 

T + 1 0.594 0.527 0.155 

T + 2 0.650 0.840 0.883 

T + 3 1.473 1.463 0.321 

T + 4 0.695 2.204 2.185 

T + 5 0.284 1.357 0.158 

T + 6 1.020 1.381 0.575 

T + 7 0.528 1.149 1.668 

T + 8 0.000 1.259 5.774 

    

Cumulative Sum (Zt+1 to Zt+2) 1.244 1.367 1.038 

Cumulative Sum (Zt+1 to Zt+4) 3.412 5.033 3.544 

Cumulative Sum (Zt+1 to Zt+8) 5.244 10.180 11.719 
NICA: Nicaraguan Inflation Combination Assessment; EW: Equal weights; T: Top 
weighted model;  
FE: Forecast Error; ABS: Absolute value; RMSE: Root Mean Squared Error; 
Z = ABS(FE)*RMSE. 
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Table 5.  Sensitivity Analysis (Window Size = 30 observations) 

 

(a) Untrimmed estimation 

 

FORECASTED 
PERIOD 

Z(NICA) Z(EW) Z(T) 

T + 1 0.483 0.595 0.394 

T + 2 0.485 0.614 0.632 

T + 3 0.645 0.806 0.062 

T + 4 0.859 0.973 0.259 

T + 5 0.351 0.841 1.017 

T + 6 0.506 0.806 1.061 

T + 7 0.225 0.700 1.818 

T + 8 0.383 0.925 0.248 
    

Cumulative Sum (Zt+1 to Zt+2) 0.968 1.209 1.026 

Cumulative Sum (Zt+1 to Zt+4) 2.472 2.988 1.347 

Cumulative Sum (Zt+1 to Zt+8) 3.936 6.260 5.491 

 

 

 

(b) Endogenous Trimming (Weights above Mean + 2SD) 

FORECASTED 
PERIOD 

Z(NICA) Z(EW) Z(T) 

T + 1 0.567 0.595 0.394 

T + 2 0.220 0.614 0.632 

T + 3 0.855 0.806 0.062 

T + 4 1.311 0.973 0.259 

T + 5 0.218 0.841 1.017 

T + 6 1.463 0.806 1.061 

T + 7 0.067 0.700 1.818 

T + 8 0.123 0.925 0.248 
 

   
Cumulative Sum (Zt+1 to Zt+2) 0.787 1.209 1.026 

Cumulative Sum (Zt+1 to Zt+4) 2.953 2.988 1.347 

Cumulative Sum (Zt+1 to Zt+8) 4.824 6.260 5.491 

NICA: Nicaraguan Inflation Combination Assessment; EW: Equal weights; T: Top 
weighted model;  
FE: Forecast Error; ABS: Absolute value; RMSE: Root Mean Squared Error; 

 Z = ABS(FE)*RMSE. 
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It is important to mention that even when NICA’s algorithm was originally built to produce 

inflation forecasts, it can also be adapted to generate forecasts for other series, particularly 

monetary policy sensitive variables such as economic growth, nominal and real exchange rates, 

or foreign inflation and output, among others. Hence, we strongly recommend that NICA’s 

algorithm be incorporated within the set of tools used by the Central Bank of Nicaragua to 

generate macroeconomic forecasts that are used as basis for monetary policy decisions.    

 

 

V. CONCLUSIONS 

 

We attempt to add to the current forecast combination literature by developing a 

methodology to combine forecasts, and to evaluate their outcomes, in order to forecast 

Nicaraguan inflation.  This methodology, called the Nicaraguan Inflation Combination 

Assessment (NICA), is an horizon-specific weighting scheme, where forecasts are selected 

(trimmed) according to their historical statistical significance. Projections were generated by five 

type of models: ARMA, OLS, SWLS, VAR and VEC, based on quarterly data for the period 

2001Q4-2017Q1. Four inflation fundamentals are considered for estimation and forecasting: US 

inflation, domestic money supply, banking credit to the Nicaraguan private sector, and the 

Cordoba-US$ nominal exchange rate.  Forecast combination results generated by NICA are 

found to over perform two high standard benchmarks, which are difficult to beat in empirical 

analysis: Equal Weighting (EW) and Top Model (T) criteria.  Our results and sensitivity analysis 

favor endogenous trimming both for the short and long term forecast horizons.  
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ANNEX: NICA’S ALGORITHM 

 

The Nicaraguan Inflation Combination Assessment (NICA) is designed to generate an 

efficient out-of-sample forecast path for a finite time series, based on a variety of forecasting 

models. A forecast path is the number of periods that such a time series will be forecasted, which 

for this case it will be restricted to be lower or equal than the number of observations in a sample.  

Let’s assume that 𝒚𝑡 = (𝑦1, 𝑦2, 𝑦3,… . 𝑦𝑁)′ is an N-size vector containing a finite time 

series, which we are interested to forecast for H periods ahead of the sample size (where H = 8 

< N).  To perform this task we can use K models of the following types: ARMA, OLS, SWLS, 

VAR, and VEC.  Hence, the specific out-of-sample forecast path for 𝒚𝑡 could be represented 

by �̂�𝑡 = (�̂�𝑁+1, �̂�𝑁+2,… . �̂�𝑁+𝐻)′. In addition, let 𝒚𝑡
𝑤 = (𝑦1

𝑤, 𝑦2
𝑤, 𝑦3

𝑤, … . 𝑦𝑆
𝑤)′ be an S-size 

vector containing an ordered subsample of the original series (where S < N), such that 𝒚𝑡
𝑤 is 

contained W times within 𝒚𝑡.  In other words, there could be a total of W continuous-size-S 

windows that can be derived from the original sample.  Based on this information, NICA can 

be computed through the following steps. 

 

STEP 1.  ROLLING REGRESSIONS   

The first step consists of estimating rolling regressions of sample size S for each model k, 

so to generate in-sample forecasts for h periods ahead, for h = 1, 2,…H. Those forecasts can be 

arranged in the H x W matrix depicted in expression (A.1). 

 

�̂�𝑡,𝑘
𝑤 =

(

 
 
�̂�𝑆+1,𝑘
1 �̂�𝑆+1,𝑘

2

�̂�𝑆+2,𝑘
1 �̂�𝑆+2,𝑘

2

… �̂�𝑆+1,𝑘
𝑊

… �̂�𝑆+2,𝑘
𝑊

⋮ ⋮
�̂�𝑆+𝐻,𝑘
1 �̂�𝑆+𝐻,𝑘

2
⋱ ⋮
… �̂�𝑆+𝐻,𝑘

𝑊

)

 
 

𝐻𝑥𝑊

    (A.1) 

 

Where the columns of �̂�𝑡,𝑘
𝑤  represent H-size forecast vectors performed by model k.  The 

number of column vectors is equivalent to W, which is the number of size-S sample windows 

that could be estimated from the whole sample size N.    
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STEP 2.  ABSOLUTE FORECAST ERRORS AND MODEL WEIGHTS 

A different weight, 𝑞𝑆+ℎ,𝑘
𝑤 , is assigned to each model k, for k = 1, 2,…K, according to its 

performance (or forecast accuracy) to project each period S+h, for h = 1, 2,…H. Consider 

expression (A.2), which is a H x W matrix containing the inverse of in-sample absolute forecast 

errors generated by model k. 

 

𝒇�̂�𝑡,𝑘
𝑤 =

(

 
 

𝑓�̂�𝑆+1,𝑘
1 𝑓�̂�𝑆+1,𝑘

2

𝑓�̂�𝑆+2,𝑘
1 𝑓�̂�𝑆+2,𝑘

2

… 𝑓�̂�𝑆+1,𝑘
𝑊

… 𝑓�̂�𝑆+2,𝑘
𝑊

⋮ ⋮
𝑓�̂�𝑆+𝐻,𝑘
1 𝑓�̂�𝑆+𝐻,𝑘

2
⋱ ⋮
… 𝑓�̂�𝑆+𝐻,𝑘

𝑊
)

 
 

𝐻𝑥𝑊

   (A.2) 

An absolute forecast error represents the distance, from its observed value, of an S+h 

forecast generated by model k based on a sample window w. Therefore, the smaller its value, the 

more accurate the forecast. Now, its inverse value could be interpreted as model k’s importance 

to forecast S+h, since the lower the absolute forecast error, the higher its inverse. For instance,  

𝑓�̂�𝑆+2,5
3  represents the absolute forecast error inverse for the S+2 in-sample forecast performed 

by the 5th model (from a total of K models) in the third window estimated (out of W); the greater 

its value (the lower its absolute forecast error), the more accurate is model 5th to forecast the 

second period ahead of the sample size, so the greater should be the weight assigned to its S+2 

forecast. To get such weights, lets firs add up (A.2) over all k models, and represent that 

summation in the H x W matrix 𝑭�̂�𝑡
𝑤, as illustrated in (A.3). 

 

𝑭�̂�𝑡
𝑤 =∑

(

 
 

𝑓�̂�𝑆+1,𝑘
1 𝑓�̂�𝑆+1,𝑘

2

𝑓�̂�𝑆+2,𝑘
1 𝑓�̂�𝑆+2,𝑘

2

… 𝑓�̂�𝑆+1,𝑘
𝑊

… 𝑓�̂�𝑆+2,𝑘
𝑊

⋮ ⋮
𝑓�̂�𝑆+𝐻,𝑘
1 𝑓�̂�𝑆+𝐻,𝑘

2
⋱ ⋮
… 𝑓�̂�𝑆+𝐻,𝑘

𝑊
)

 
 

𝐾

𝑘=1

=

(

 

𝐹�̂�𝑆+1
1 𝐹�̂�𝑆+1

2

𝐹�̂�𝑆+2
1 𝐹�̂�𝑆+2

2

… 𝐹�̂�𝑆+1
𝑊

… 𝐹�̂�𝑆+2
𝑊

⋮ ⋮
𝐹�̂�𝑆+𝐻
1 𝐹�̂�𝑆+𝐻

2
⋱ ⋮
… 𝐹�̂�𝑆+𝐻

𝑊 )

  

                (A.3) 

 

Where each value on the right hand side matrix represents the summation overall absolute 

forecast error inverse values generated by every model k when forecasting each S+h period at 

the specific window w. In other words, 𝐹�̂�𝑆+2
3  stands for the summation of absolute forecast 

error inverse values that result from forecasting S+2 by all K models during the third rolling 

regression window ( 𝐹�̂�𝑆+2
3 = ∑ 𝑓�̂�𝑆+2,𝑘

3𝐾
𝑘=1 ).  Therefore, model k’s weight or significance for 
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each rolling window estimation, is obtained by dividing each element of (A.2) by its 

corresponding element in (A.3), as indicated below.  

 

�̂�𝑡,𝑘
𝑤 =

(

 
 
 
 

𝑓�̂�𝑆+1,𝑘
1

𝐹�̂�𝑆+1
1

𝑓�̂�𝑆+1,𝑘
2

𝐹�̂�𝑆+1
2

𝑓�̂�𝑆+2,𝑘
1

𝐹�̂�𝑆+2
1

𝑓�̂�𝑆+2,𝑘
2

𝐹�̂�𝑆+2
2

…
𝑓�̂�𝑆+1,𝑘
𝑊

𝐹�̂�𝑆+1
𝑊

…
𝑓�̂�𝑆+2,𝑘
𝑊

𝐹�̂�𝑆+2
𝑊

⋮ ⋮
𝑓�̂�𝑆+𝐻,𝑘
1

𝐹�̂�𝑆+𝐻
1

𝑓�̂�𝑆+𝐻,𝑘
2

𝐹�̂�𝑆+𝐻
2

⋱ ⋮

…
𝑓�̂�𝑆+𝐻,𝑘
𝑊

𝐹�̂�𝑆+𝐻
𝑊 )

 
 
 
 

=

(

 
 
�̂�𝑆+1,𝑘
1 �̂�𝑆+1,𝑘

2

�̂�𝑆+2,𝑘
1 �̂�𝑆+2,𝑘

2

… �̂�𝑆+1,𝑘
𝑊

… �̂�𝑆+2,𝑘
𝑊

⋮ ⋮
�̂�𝑆+𝐻,𝑘
1 �̂�𝑆+𝐻,𝑘

2
⋱ ⋮
… 𝑞𝑆+𝐻,𝑘

𝑊

)

 
 

 (A.4) 

 

Each element of matrix �̂�𝑡,𝑘
𝑤  represents the weight or importance of model k when 

forecasting period S+h at rolling window w. Notice that each element of  �̂�𝑡,𝑘
𝑤  has a value between 

zero and one. The higher its value, or the closer is it to one, the more accurate its forecast of 

S+h, and the more important would be model k (or the higher weight will have model k) when 

forecasting N+h.  Moreover, the summation of all k weights for the same rolling window w, and 

for each S+h period forecasted, is equal to one (∑ �̂�𝑆+ℎ,𝑘
𝑤𝐾

𝑘=1 = 1; for w = 1,2,…W and h = 

1,2,…H).    

 

STEP 3.  AVERAGE WEIGHT FOR EACH MODEL 

This step aims to reduce the H x W matrix �̂�𝑡,𝑘
𝑤 , depicted in expression (A.4), to a column 

vector H that contains an optimal weight for each S+h period forecasted by model k.  This is 

done by taking a simple average of weights, overall rolling regression windows, computed for 

the same forecasting period S+h,; that is, to compute an average of all values that belong to the 

same row of matrix �̂�𝑡,𝑘
𝑤 . In matrix notation, this operations is performed by multiplying (A.4) 

by a W x 1 vector containing a constant value equivalent to the inverse of the number of 

windows (1/W), as described below.   

 

�̂�𝑡,𝑘 =

(

 
 
�̂�𝑆+1,𝑘
1 �̂�𝑆+1,𝑘

2

�̂�𝑆+2,𝑘
1 �̂�𝑆+2,𝑘

2

… �̂�𝑆+1,𝑘
𝑊

… �̂�𝑆+2,𝑘
𝑊

⋮ ⋮
�̂�𝑆+𝐻,𝑘
1 �̂�𝑆+𝐻,𝑘

2
⋱ ⋮
… 𝑞𝑆+𝐻,𝑘

𝑊

)

 
 

𝐻𝑥𝑊(

 
 

1

𝑊

⋮
⋮
1

𝑊)

 
 

𝑊𝑥1

=

(

 

�̂�𝑆+1,𝑘
�̂�𝑆+2,𝑘
⋮

�̂�𝑆+𝐻,𝑘)

 

𝐻𝑥1

 (A.5) 
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Where each term of (A.5) is given by �̂�𝑆+ℎ,𝑘 =
1

𝑊
�̂�𝑆+ℎ,𝑘
1 +

1

𝑊
�̂�𝑆+ℎ,𝑘
2 +⋯+

1

𝑊
�̂�𝑆+ℎ,𝑘
𝑊 . This 

term represents model k’s pseudo out-of-sample forecasting efficiency to predict S+h, and its 

value fluctuates between zero and one.  Therefore, the greater its value (the closer it is to one), 

the more accurate is model k’s S+h forecast. Notice that model k’s forecast efficiency does not 

necessarily have to hold among all forecast path periods; in other words, model k could be an 

efficient predictor of S+1, but it is, not necessarily, an efficient predictor of periods S+2, 

S+3,..S+H.  

 

STEP 4.  AVERAGE WEIGHT DISTRIBUTIONS AND ENDOGENOUS 

TRIMMING 

The last step involves getting rid of the models whose forecast efficiency, denoted by its 

average weight  �̂�𝑆+ℎ,𝑘, is too low relatively to the rest of models.  Consider first an expansion 

of expression (A.5), into an H x K matrix containing average weights for all K models used to 

generate pseudo out-of-sample forecasts: 

 

�̂�𝑡,𝑘 =

(

 

�̂�𝑆+1,1 �̂�𝑆+1,2
�̂�𝑆+2,1 �̂�𝑆+2,2

… �̂�𝑆+1,𝐾
… �̂�𝑆+2,𝐾

⋮ ⋮
�̂�𝑆+𝐻,1 �̂�𝑆+𝐻,2

⋱ ⋮
… �̂�𝑆+𝐻,𝐾)

 

𝐻𝑥𝐾

  (A.6) 

 

Each column of matrix �̂�𝑡,𝑘 contains model k’s average weights (for k=1,2,…K) that result 

from forecasting 𝒚𝑡 for each period of the forecast horizon: S+1, S+2,…S+H, represented by 

each row of (A.6).  Notice that average weights from a single model k are not necessarily equally 

efficient for all periods forecasted, since it could be a good short-term predictor, but a poor long 

term forecaster. As mentioned above, matrix �̂�𝑡,𝑘 row values contain each model’s average 

accuracy to predict a specific period of the forecast path. Therefore, the summation overall same 

row values is equal to one (∑ �̂�𝑆+ℎ,𝑘 = 1
𝐾
𝑘=1 ) for each h=1,2,…H. Furthermore, we computed 

the mean and standard deviation for all elements in a row, so to obtain an average weight 

distribution, which allowed us to select models based on above average performance. Through 

this endogenous trimming method we could get rid of (set to zero) those average weight values 

at the lower extreme of each distribution.  The proportion of models whose average weights 

were set to zero, represented those who were below two standard deviations above the mean, 
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so we ended up with the top 5% performers.  Hence, we also renormalized each row, so that 

their elements were still add up to one. The resulting matrix will be similar in dimensions to 

(A.6), but it will contain the final normalized weights for each model k, and for each period S+h, 

where h=1,2,…H. 

 

�̂�𝑡,𝑘
𝑛 =

(

 
 
�̂�𝑆+1,1
𝑛 �̂�𝑆+1,2

𝑛

�̂�𝑆+2,1
𝑛 �̂�𝑆+2,2

𝑛

… �̂�𝑆+1,𝐾
𝑛

… �̂�𝑆+2,𝐾
𝑛

⋮ ⋮
�̂�𝑆+𝐻,1
𝑛 �̂�𝑆+𝐻,2

𝑛
⋱ ⋮
… �̂�𝑆+𝐻,𝐾

𝑛

)

 
 

𝐻𝑥𝐾

  (A.7) 

 

Where �̂�𝑆+ℎ,𝑘
𝑛  represents model k renormalized average weight to forecast S+h, for 

k=1,2,…K, and h=1,2,…H. Those weights are understood as the importance of each model in 

predicting S+h. As before, it follows that the summation of weights along the same row is equal 

to one, ∑ �̂�𝑆+ℎ,𝑘
𝑛𝐾

𝑘=1 = 1. 

 

STEP 5.  EFFICIENT FORECAST PATH 

The final step in the algorithm is to generate out-of-sample forecasts for h periods ahead 

for each model k, and to weight each forecast by the normalized weight matrix �̂�𝑡,𝑘
𝑛 , expression 

(A.7).  Let’s express these out-of-sample forecasts by the H x K matrix �̂�𝑘,𝑡, as depicted in 

expression (A.8). 

 

�̂�𝑡,𝑘 =

(

 

�̂�𝑁+1,1 �̂�𝑁+1,2
�̂�𝑁+2,1 �̂�𝑁+2,2

… �̂�𝑁+1,𝐾
… �̂�𝑁+2,𝐾

⋮ ⋮
�̂�𝑁+𝐻,1 �̂�𝑁+𝐻,2

⋱ ⋮
… �̂�𝑁+𝐻,𝐾)

 

𝐻𝑥𝐾

  (A.8) 

 

Where �̂�𝑁+ℎ,𝑘 represents variable 𝑦𝑡’s forecast generated by model k for period N+h. Now, 

by multiplying each element of (A.8) by its corresponding element of (A.7), the following 

expression is obtained:   
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�̂�𝑡,𝑘
𝑛 �̂�𝑡,𝑘 =

(

 
 
�̂�𝑆+1,1
𝑛 �̂�𝑁+1,1 �̂�𝑆+1,2

𝑛 �̂�𝑁+1,2

�̂�𝑆+2,1
𝑛 �̂�𝑁+2,1 �̂�𝑆+2,2

𝑛 �̂�𝑁+2,2

… �̂�𝑆+1,𝐾
𝑛 �̂�𝑁+1,𝐾

… �̂�𝑆+2,𝐾
𝑛 �̂�𝑁+2,𝐾

⋮ ⋮
�̂�𝑆+𝐻,1
𝑛 �̂�𝑁+𝐻,1 �̂�𝑆+𝐻,2

𝑛 �̂�𝑁+𝐻,2

⋱ ⋮
… �̂�𝑆+𝐻,𝐾

𝑛 �̂�𝑁+𝐻,𝐾)

 
 

𝐻𝑥𝐾

  (A.9) 

 

Each column in (A.9) represents the weighted out-of-sample forecast of model k for each 

period N+h, for h=1,2,…H.  Normalized weights �̂�𝑆+ℎ,𝑘
𝑛  are understood as model k’s forecast 

efficiency of pseudo out-of-sample predictions of 𝑦𝑡; their value falls between zero and one, and 

their summation overall k models is equal to one. Therefore, each element of (A.9), say 

�̂�𝑆+ℎ,𝑘
𝑛 �̂�𝑁+ℎ,𝑘, can also be interpreted as the contribution of model k to 𝑦𝑡’s forecast of period 

𝑁 + ℎ. Hence, the summation of each row (or period N+h) of matrix �̂�𝑡,𝑘
𝑛 �̂�𝑡,𝑘 overall columns 

(or k models), is equivalent to a single forecast for 𝑦𝑡. In other words, such a summation 

represents the total weighted contribution of all K models to 𝑦𝑡 forecast in period N+h., as 

represented in (A.10).      

 

�̂�𝑡 =

(

 
 
�̂�𝑆+1,1
𝑛 �̂�𝑁+1,1 + �̂�𝑆+1,2

𝑛 �̂�𝑁+1,2 +⋯+ �̂�𝑆+1,𝐾
𝑛 �̂�𝑁+1,𝐾

�̂�𝑆+2,1
𝑛 �̂�𝑁+2,1 + �̂�𝑆+2,2

𝑛 �̂�𝑁+2,2 +⋯+ �̂�𝑆+2,𝐾
𝑛 �̂�𝑁+2,𝐾

⋮
�̂�𝑆+𝐻,1
𝑛 �̂�𝑁+𝐻,1 + �̂�𝑆+𝐻,2

𝑛 �̂�𝑁+𝐻,2 +⋯+ �̂�𝑆+𝐻,𝐾
𝑛 �̂�𝑁+𝐻,𝐾)

 
 
= (

�̂�𝑁+1
�̂�𝑁+2
⋮

�̂�𝑁+𝐻

) 

 

(A.10) 

 

Where vector �̂�𝑡 represents the NICA’s estimate of 𝑦𝑡 for period N+h, for h=1,2,…H.   

 

Finally, it is important to mention that NICA’s algorithm presented in this section was 

programmed in Eviews to produce our empirical outcome.  Those programs are available upon 

request for further replication of our results.  Additional suggestions from the authors can also 

be provided if NICA is to be implemented as a complementary tool at the Central Bank of 

Nicaragua.   

 

 




